Quotes
在科学上没有平坦的大道,只有那些不畏艰险沿着陡峭山路攀登的人,才有希望达到光辉的顶点。
----马克思
-----------------------------------------------
Research Projects
Collaborations
请有兴趣的研究组联系我们。欢迎任何形式的合作,尤其是在自组装、水凝胶以及生物医药等方向的合作。
------------------------------------------
Publications
Wang, Y.; Huang, F.; Chen, X.; Wang, X.-W.; Zhang, W.-B.; Peng, J.; Li, J.; Zhai, M.* Stretchable, Conductive and Self-Healing Hydrogel with Super Metal Adhesion. Chem. Mater. 2018, 30 , 4289-4297.
ABSTRACT: Currently, adhesive and self-healable hydrogels have highlighted their potential in tissue adhesives, sealants, and implantable electronic devices. For electronic device adhesives, a combination of adhesive, conductive, and selfhealing properties is required. Here, we demonstrated a onepot synthesis method of a novel self-healing hydrogel (named GOxSPNB) with various ratios of graphene oxide to soluble starch and poly(sodium 4-vinyl-benzenesulfonate-co-N-(2- (methacryloyloxy)ethyl)-N,N-dimethylbutan-1-aminium bromide) by a γ-radiation technique. The resultant hydrogel based on a totally physical cross-linking network exhibits fast automatic self-healing ability, nontoxicity, ionic conductivity about 10.5 mS dm−1, and super highly reusable metal adhesion with 60.5 MPa adhesive strength to the copper plates at room temperature, nearly one magnitude larger than other reversible adhesives that have been reported. Meanwhile, it also shows extreme adhesive strength to some organic substrates, such as porcine skin (130.70 kPa) which is the highest strength to date. This self-healable adhesive hydrogel, especially for metal substrates, has great potential in hydrogel glues for the design and fabrication of smart electronic device adhesives.