箴言
在科学上没有平坦的大道,只有那些不畏艰险沿着陡峭山路攀登的人,才有希望达到光辉的顶点。
----马克思
-----------------------------------------------
合作研究
请有兴趣的研究组联系我们。欢迎任何形式的合作,尤其是在自组装、水凝胶以及生物医药等方向的合作。
------------------------------------------
研究成果
Wei, J.;* Zhang, X.; Wang, F.; Shao, Y.; Zhang, W.-B.;* Wu, H.* One-Step Preparation of Highly Viscoelastic, Stretchable, Antibacterial, Biocompatible, Wearable, Conductive Composite Hydrogel with Extensive Adhesion. Compos. Sci. Technol. 2023, 231, 109793. https://doi.org/10.1016/j.compscitech.2022.109793
In recent years, conductive hydrogels have made remarkable progress in the field of simulating human skin because of their good inherent properties. However, developing a hydrogel that combines high mechanical strength, satisfactory ionic conductivity and extensive adhesion to a variety of substrates remains a challenge. Herein, we report a double network composite hydrogel using dopa methacrylate, ethyl methacrylate, methacrylatoethyl trimethylammonium chloride, and acrylic acid. The hydrogel has a tensile strength of ∼66.1 kPa, an elongation-at-break of 240%, a high ionic conductivity of 10.74 × 10−4 S/cm, good antibacterial effect against Escherichia coli and Staphylococcus aureus, and extensive adhesion to both polar and non-polar surfaces. The natural cellulose nanofibers have a synergistic effect on enhancing the mechanical strength of ionic conductive hydrogels. In addition, the wearable skin sensor based on the hydrogel has the characteristics of high sensitivity, wide sensing range, good stability, high precision and good repeatability for human movement detection and recognition. Based on this simple strategy, multifunctional hydrogels with high mechanical strength, adhesion, antibacterial properties, high electrical signal sensitivity and good biocompatibility were obtained, which has potential application prospects in the field of wearable devices.