箴言
在科学上没有平坦的大道,只有那些不畏艰险沿着陡峭山路攀登的人,才有希望达到光辉的顶点。
----马克思
-----------------------------------------------
合作研究
请有兴趣的研究组联系我们。欢迎任何形式的合作,尤其是在自组装、水凝胶以及生物医药等方向的合作。
------------------------------------------
研究成果
Zhang, F.; Liu, Y.; Da, X.-D.; Zhang, W.-B.* Toward Selective Synthesis of Protein Olympiadanes via Orthogonal Active Templates in One Step. CCS Chem. 2023, DOI: 10.31635/ccschem.023.202303071. https://doi.org/10.31635/ccschem.023.202303071
Unlike small molecules, the topological complexity of macromolecules remains largely unexplored due to the huge synthetic challenge. Herein, we report the development of orthogonal active templates for concise and selective synthesis of protein [n]heterocatenanes toward protein olympiadanes. An active template (AT-Snoop) was first developed based on the isopeptide-bond-forming RrgA domain with comparable efficiency and excellent orthogonality to the previously reported active template (AT-Spy) based on the CnaB2 domain. Their combination facilitates selective synthesis of protein [n]catenanes from multiple components in one step and the resulting structures have been verified by SDS-PAGE, SEC, LC-MS, and proteolytic digestion experiments. The results offer a promising solution to tackling the daunting challenge for the precision synthesis of protein olympiadane with five distinct ring components. Not only does the success provide new tools for protein topology engineering, but also it shall spur and fuel the future exploitation of topology-related functional benefits in protein science.